Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes.

نویسندگان

  • Yiming Li
  • Van H Tran
  • Colin C Duke
  • Basil D Roufogalis
چکیده

In this study we investigate the active constituents of the rhizome of Zingiber officinale, Roscoe (ginger) and determine their activity on glucose uptake in cultured L6 myotubes and the molecular mechanism underlying this action. Freeze-dried ginger powder was extracted with ethyl acetate (1 kg/3 L) to give the total ginger extract, which was then separated into seven fractions, consisting of nonpolar to moderately polar compounds, using a short-column vacuum chromatographic method. The most active fraction (F7) was further purified for identification of its active components. The effect of the extract, fractions, and purified compounds on glucose uptake was evaluated using radioactive labelled 2-[1,2-³H]-deoxy-D-glucose in L6 myotubes. The pungent phenolic gingerol constituents were identified as the major active compounds in the ginger extract enhancing glucose uptake. (S)-[6]-Gingerol was the most abundant component among the gingerols, however, (S)-[8]-gingerol was the most potent on glucose uptake. The activity of (S)-[8]-gingerol was found to be associated primarily with an increase in surface distribution of GLUT4 protein on the L6 myotube plasma membrane, as detected by expression of hemagglutinin epitope-tagged GLUT4 in L6 muscle cells. The enhancement of glucose uptake in L6 rat skeletal muscle cells by the gingerol pungent principles of the ginger extract supports the potential of ginger and its pungent components for the prevention and management of hyperglycemia and type 2 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro and in vivo Production of Gingerols and Zingiberene in Ginger Plant (Zingiber officinale Roscoe)

      Ginger plant, Zingiber officinale Roscoe, is an important tropical plant used as spices and well known for its medicinal properties. It has a pungent and aromatic rhizome rich of zingiberen and gingerols. Many secondary metabolites are known to accumulate in the plant cell culture systems. So, in this research, gingerols and zingiberene production of callus cultures were compared...

متن کامل

High leptin levels acutely inhibit insulin-stimulated glucose uptake without affecting glucose transporter 4 translocation in l6 rat skeletal muscle cells.

Obesity is a major risk factor for the development of insulin resistance, characterized by impaired stimulation of glucose disposal into muscle. The mechanisms underlying insulin resistance are unknown. Here we examine the direct effect of leptin, the product of the obesity gene, on insulin-stimulated glucose uptake in cultured rat skeletal muscle cells. Preincubation of L6 myotubes with leptin...

متن کامل

Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity.

Hyperglycemia and hyperinsulinemia are cardinal features of acquired insulin resistance. In adipose cell cultures, high glucose and insulin cause insulin resistance of glucose uptake, but because of altered GLUT4 expression and contribution of GLUT1 to glucose uptake, the basis of insulin resistance could not be ascertained. Here we show that GLUT4 determines glucose uptake in L6 myotubes stabl...

متن کامل

Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes.

It is well established that insulin stimulation of glucose uptake in skeletal muscle cells is mediated through translocation of GLUT4 from intracellular storage sites to the cell surface. However, the established skeletal muscle cell lines, with the exception of L6 myocytes, reportedly show minimal insulin-dependent glucose uptake and GLUT4 translocation. Using C(2)C(12) myocytes expressing exo...

متن کامل

Dimethyl sulfoxide enhances GLUT4 translocation through a reduction in GLUT4 endocytosis in insulin-stimulated 3T3-L1 adipocytes.

Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Planta medica

دوره 78 14  شماره 

صفحات  -

تاریخ انتشار 2012